Источник перевод для mixednews – Onriom
Производство искусственных алмазов требует выполнения нескольких сложных условий. Недавно при помощи компьютерного моделирования учёные смогли в мельчайших деталях воссоздать процесс превращения графита в алмаз.
Подпись к изображению: При помощи новейшего научного метода учёные впервые в точности воспроизвели процесс превращения графита в алмаз.
Переход состоит из нескольких этапов, начиная от образования алмазного «семечка» внутри графита, и заканчивая полной трансформацией в настоящий алмаз под воздействием высокого давления.
Между этими двумя разновидностями естественно формирующегося элементарного углерода (темно-серым графитом и блестящим алмазом) намного больше различий, чем между каждым из них и практически любым другим материалом.
[blockquote_note]Существенная разница в прочности алмаза и графита связана, в основном, с их кристаллической структурой – кубической в случае с алмазом и гексагональной в случае с графитом.[/blockquote_note]
Это различие и делает алмаз прочнейшим из всех известных материалов, в отличие от относительно мягкого графита. Именно благодаря своей высокой прочности алмазы пользуются спросом не только как драгоценные камни — их используют в промышленности для шлифовки и распиливания особо твердых материалов.
Сложное превращение
Впервые получить алмаз из графита искусственным образом удалось 60 лет назад. Но до производства в промышленных масштабах дело не дошло. Дело в том, что необходимыми условиями для его производства являются высокое давление и высокие температуры, процесс этот очень длительный и требует больших энергетических затрат. Он включает в себя принудительное изменение структуры углерода, изменение расположения его электронов.
Должны сформироваться четыре связи атомов углерода вместо трех, и состояние углерода должно измениться с энергетически «комфортного» до энергетически «некомфортного», плотного состояния. Чтобы это произошло, углерод должен преодолеть сильный энергетический барьер.
[blockquote_fact]Как именно происходит подобная трансформация, и в какой момент углерод становится алмазом — до сих пор наука не могла дать внятного ответа на этот вопрос.[/blockquote_fact]
Профессор вычислительных наук Высшей технической школы Цюриха и Университета Лугано Мишель Парринелло и его команда, используя метод компьютерного моделирования, успешно воссоздали процесс трансформации графита в алмаз в виртуальном пространстве.
Упрощение дает ложную картину
В прошлом ученые пытались смоделировать фазу перехода, используя так называемый «метод Кар-Парринелло». С помощью этого метода можно приблизительно определить структуру и энергетическое состояние электронов в каждой позиции в ионе и, таким образом, смоделировать ситуацию с разрывом и последующим формированием новых ионных связей.
Метод 25-летней давности был разработан в процессе совместной работы Парринелло с Роберто Каром. «Однако создание точной модели процесса перехода от графита к алмазу обойдется слишком дорого, если учесть необходимость отслеживать огромное количество атомов», — говорит Парринелло.
Исследователи попытались упростить этот метод: они значительно сократили используемое при моделировании количество атомов. Но, как утверждает Парринелло, при подобном моделировании вся фаза трансформации графита выглядит таким образом, будто происходит мгновенно, как по команде, а не поэтапно.
Совсем другую картину удалось получить при помощи нового, недавно разработанного метода моделирования. Используя суперкомпьютер Швейцарского национального суперкомпьютерного центра, учёные вычислили десятки тысяч конфигураций атомов с плавно переходящим энергетическим состоянием.
Это означает, что конфигурации атомов обладают широким спектром возможных энергетических состояний. После того как ученые интерполировали их энергетическое состояние и использовали полученные данные как базис для моделирования, стало очевидно, что сначала формируется алмазное «семечко», которое затем, под влиянием высокого давления, постепенно изменяет свою гексагональную графитную структуру до кубической.
[blockquote_note]Моделирование фазы трансформации с помощью новейшего метода позволило сделать ещё одно открытие: структурные дефекты в кристаллической решетке графита уменьшают количество барьеров, которые необходимо преодолеть для образования алмазного «семечка».[/blockquote_note].. Поэтому структурные дефекты могут увеличить скорость протекания процесса преобразования.
[blockquote]Этот метод может быть использован везде, где есть необходимость визуализировать фазовые переходы [/blockquote]- подчеркивает Парринелло.
супер